
EDELANG: Environmental Design Language

Siniša Kolarić
School of Interactive Arts and Technology

Simon Fraser University
250-13450 102nd Avenue, Surrey, BC, V3T 0A3 Canada

March 14, 2009

Abstract

In this work we present EDELANG, a high-level mod-
eling language for environmental design. EDELANG is
a hybrid language inspired by existing high-level declar-
ative languages and by ontologies. The user specifies
the what of the design, and EDELANG then decides on
the how in creating the final design, thus freeing the user
from having to specify procedural details.

Introduction
In traditional societies everybody knows how to build; ev-
eryone builds for himself, and helps his neighbour build
(Alexander 1979). The architectural language (“the pattern
language”) is known to everybody, and everyone can design
a great building. Nowadays however, architects and design-
ers in general have their own, specialized, privatized lan-
guages; and ordinary people have been robbed of their de-
sign intuitions by specialists. The common, communal and
shared expertise on how to make great-looking and well-
functioning buildings has been lost. To remedy this situa-
tion, Alexander calls for the rediscovery of these common
shared languages, and to make the “patterns” of how to de-
sign great building explicit again, and aproachable by every-
body.

In a similar vein, the main motivation for this work was
to create a powerful modeling and programming language
for environmental design which would enable even non-
specialists to create beautiful, sound and usable architec-
tural, product or engineering designs (or any other type of
environmental designs), without having to deal with overly
complex or expensive CAD packages. The general goal is to
enable the users of EDELANG to specify what they want in
a design to the desired level of detail, and EDELANG will
do the rest for them, i.e. create the final design. The user
would thus be freed from having to:

• Specify low-level details (like which bolts to use, or exact
wall locations in milimeters) or

• Execute complex operations (like working through the
GUI interface of CAD applications, or creating traditional
blueprints) or

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Specify complex procedures, i.e. having to write complex
scripts or code.

Thus EDELANG can, to a degree, be called a “virtual de-
signer” technology; as with a real designer, the users specify
what they desire in a design, and EDELANG then goes on
to create the final artifact design.

Guiding Principles in Creating EDELANG
Our guiding principles in creating EDELANG were:

• EDELANG shall be a formal and well-documented lan-
guage. As such, it comes with a:

1. Formal specification,
2. Reference compiler implementation which can gener-

ate 3D models (both volumetric models with materials,
or conventional 2D triangle meshes with materials),

3. 3D viewer,
4. Rich web-based library of components, where volun-

teers around the world create, modify and share their
own design components,

5. Authoring tool (for new components and new design
styles),

6. Complete documentation,
7. Tutorial, and
8. Set of EDELANG code samples.

• EDELANG shall generate the greatest possible effect for
the smallest source code. That is, the goal is for EDE-
LANG programs to be concise and compact; what isn’t
specified, EDELANG generates, and decides upon, by it-
self. For example, a minimal EDELANG program that
consists of just one keyword:

house

Even though it’s minimal, this EDELANG program will
create a full single-family house model (“default house”)
as shown in Fig. 1, generated by the implied set of default
parameter values.
Another minimal program which consists of one key-
word:

chair

Figure 1: The “default” detached residence model produced
by the minimal EDELANG program house . House de-
sign c© ehouseplans.com.

Figure 2: The “default” chair produced by the minimal
EDELANG program chair . Chair design c© ignis-
fatuus.com.

This EDELANG program will create a simple chair
model (“default chair”) as shown in Fig. 2, generated by
the implied set of default parameter values.
However, if the user wishes to customize the design, he
can go deeper and develop an almost arbitrarily long
EDELANG programs, overriding some or most of default
values:

house(name="My house")
{
entrance
kitchen
living_room(area=300sqf)
bedroom
bedroom()
space
{

sofa
armchair
armchair
table

}
}

In the EDELANG program above, a parameter
name="My house" was specified and the body
of keyword house() has been expanded and pop-
ulated by a number of semantically rich keywords
(entrance, kitchen, living room, . . .) speci-
fied by the user. The default value for area of one of these
spaces (living room()) has been overridden by the
user-specified value of 300 square feet.
Also note that the parameter scope denoted by a pair of
parentheses “(. . .)” is optional in EDELANG, as demon-
strated by bedroom and bedroom().

• EDELANG shall be a high-level hybrid (modeling + pro-
gramming) language specifically developed for the pur-
poses of environmental design. Our intention is to allow
the EDELANG user to create environmental designs us-
ing high-level design concepts and constructs. By having
concise and high-level language constructs, we avoid ex-
ponential decrease in productivity as the size of a program
increases. According to (Brooks 1978), the total program-
ming effort is

programming effort = K × instructions1.5

Thus the total effort expended in writing programs grows
exponentially with the total number of instructions. By
having more concise and higher-level instructions, we in-
vest less effort in developing and maintaining EDELANG
programs.
For example, if the user wants to create a kitchen, it is
sufficient to type

kitchen

If the user wants to create a refrigerator in this kitchen, it
is sufficient to type

kitchen { refrigerator }

• EDELANG shall be a human-readable, user-friendly
and expressive programming language specifically de-
veloped for the purposes of environmental design. Dif-
ferently from ontological languages which are machine-
friendly and overly verbose (e.g. RDF or OWL), or
are difficult to read or work with for average users
(for instance, various logics), EDELANG code is meant
to be readable, friendly and accessible even to non-
programmers.

• EDELANG shall be a declarative programming language
for environmental design, meaning it describes what an
artifact is like, rather than how it is built up. There-
fore, instead of specifying the control flow and a sequence
of steps to execute, the user of EDELANG specifies the
properties of the final design, and the computational in-
telligence built into the EDELANG compiler decides on
what steps to execute. Of course, the behind-the-scene
workings of EDELANG can be influenced by and are
under the control of the user, either through parameters

passed to the compiler, or directly through EDELANG
programs.

• EDELANG shall be a constraint-based programming
language for environmental design, meaning it provides
the user with the means to declare constraints between
components of the design. Related to the fact of being a
declarative language, EDELANG enables to user to spec-
ify and control the relations, called constraints, between
components of the design solution. Examples of such
constraints include “this room should be adjacent to the
bedroom” or “an alcove should be in the northwestern
corner of the kitchen”. One example of EDELANG code
containing a “distance” and an “opposite from” constraint
is:

house
{
room(id=A)

room(id=B)

room(id=C,
opposite_from=A.southeast)

distance(from=A, to=B, is=2m)
}

In the program above, we stipulate that the distance be-
tween rooms A and B should be 2 meters, and that C
should be opposite from the southeast side of A. During
the compilation, EDELANG takes all the specified con-
straints into consideration and creates the final building
design (i.e. configuration of spaces and rooms) accord-
ingly.

• EDELANG shall allow rapid prototyping of environ-
mental designs, thus leading to quick turn-around and fast
evaluation of the same. For example, changing the rela-
tive positions of two rooms requires just a quick edit of
the source code and recompilation of the corresponding
EDELANG source file. Thus the following EDELANG
program, which stipulates that space B should be to the
left of A:

house
{
space(id=A)

space(id=B, opposite_from=A.left)
}

becomes

house
{
space(id=A)

space(id=B, opposite_from=A.right)
}

The source code above now stipulates that space B should
be to the right of space A (more precisely, space B should
be opposite from the right side of A). Recompiling the

code, the resulting house model will have space B to the
right of space A.

• EDELANG shall emphasise separation of content,
topology and geometry. Conventional CAD packages
mix content, topology and geometry in the same view or
operation. In EDELANG, the user separately lists/speci-
fies components, the topology (i.e. structure or connect-
edness) of these components, and references to geome-
try/shape. EDELANG compiler then generates the 3D
model. However, if the user wishes so, he can override de-
fault rules for topology and geometry generation by spec-
ifying constraints, thus customizing the final design. For
example, if we want to have a kitchen with a round floor-
plan instead of the default rectangular floorplan, we do
not manipulate geometry directly, but specify a value for
the parameter floorplan instead:

house
{
kitchen(floorplan=circle)

}

System Architecture
This section describes the organization of the EDELANG
software agent (i.e. of the compiler) and the dependencies
between its parts.

Entities Produced During a Compilation Run
During a compilation run, EDELANG produces several in-
termediary entities.

EDELANG source
⇓

EDELANG source with expanded terms

⇓
Ontology-consistent model

⇓
Physico-geometrical model

⇓
3D graphics model (scenegraph)

Figure 3: Entities produced during a compilation run.

Therefore, EDELANG compiler produces several entities
in the process of compilation:

1. EDELANG source: this file contains the source of the
EDELANG program, in text format.

2. EDELANG source with expanded terms: this interme-
diary file contains the full EDELANG model, after all
high-level container concepts have been expanded.

3. Ontology-consistent model: this intermediary file con-
tains a full formal model of the building, consistent with
the corresponding ontology for buildings.

4. Physico-geometrical model: this intermediary file con-
tains a full physics-based model of the building being pro-
grammed.

5. 3D graphics model (scenegraph): the typical output at
the end of the pipeline. However, other outputs are possi-
ble, like for example a raster image of the building.

Phases in a Compilation Run
During a compilation run, EDELANG compiler goes
through the following phases:

1. EDELANG source ⇒ EDELANG source with ex-
panded terms: this phase expands high-level con-
cepts in the input EDELANG source. For example,
kitchen()... gets expanded into the full subtree of
all the components contained in this particular kitchen.

2. EDELANG source with expanded terms⇒ ontology-
consistent model: this phase translates the full EDE-
LANG model into a full, formal building model which
is consistent with its corresponding ontology.

3. Ontology-consistent model ⇒ physico-geometrical
model: this phase translates the full formal model of the
building, consistent with the corresponding ontology, into
the full physics-based model (which also includes the ge-
ometry of the building).

4. Physics-based model ⇒ 3D graphics model (scene-
graph): this phase translates the full physics-based model
of the building into the corresponding scenegraph, ready
to be rendered on display. This phase could, alternatively,
render the physics-based model into another type of file,
for example into a raster image.

A Session of EDELANG
In this section, we work through various EDELANG sample
programs in order to give the readers a better feeling of the
language.

The following EDELANG program will create a full
single-family house model (“default house”) as shown in
Fig. 1, generated by the implied set of default parameter
values:

house

Since no parameters have been specified for this particu-
lar keyword (house), the set of default parameters was
assumed. For example, the house style was set to the de-
fault house style (us ranch 2000), and the total area of
the house was set to default house area for this style, namely
2,330 square feet1. The program above is therefore equiva-
lent to

house(style=us_ranch_2000, area=2330sqf)

If we want to retain the style (i.e. default style) for this
house, but want to increase the total area of the house to
3,000 square feet, we write:

1According to the National Association of Home Builders
(www.nahb.com), the average home size in the United States was
2,330 square feet in 2004.

house(area=3000sqf)

or equivalently

house(style=us_ranch_2000, area=3000sqf)

If we now want to change the style of the house to bunga-
low, but still want to retain the total area of 3000 square feet,
we write:

house(style=us_bungalow_2000, area=3000sqf)

The recommended convention for naming styles is
<region-style-year>, where region represents the style’s
characteristic geographic region, style is the name of the
style, and year represents this particular style’s most prolific
year. However, this convention is not mandatory so other
style names are possible, like for example paladio emo
which is based on the style used by classic architect Andrea
Palladio when designing one specific building, namely Villa
Emo.

It should be noted that power users of EDELANG can
create their own styles, and save them into files which can
afterwards be utilized by EDELANG. The author of a style
can then either share his style with other EDELANG users,
or not share at all (for example, if the style creator wants
to preserve his/her competitive advantage in creating unique
house designs). For example, if a user authored a style called
my own style:

house(style=my_own_style, area=3000sqf)

The program above will create a house with the to-
tal available area of 3,000 square feet, using the style
my own style. Note that a separate tool will be provided
in the reference implementation and which will allow EDE-
LANG users to author their own styles.

We will now say more about the inner structure (number
of levels/stories, floorplan and room configuration, and aes-
thetics/appearance) of generated house designs. As we said
above, the following minimal program:

house

generates a model with the default style. However, the de-
fault style also dictates the default inner structure of the
house. In this case, the current style is set to the default
style (us ranch 2000), which is characterized by:
• A single (ground) story
• Open, rambling room layout, with few inner partitions
• Built using natural materials: wood, brick
• Minimal decoration
• Asymmetry
• Low pitched gable roof; long roofline with large over-

hanging eaves
• Large windows
• Patio
• Attached side garage.

If we now change the style to split level, as practiced in
US in 2000, we write:

house(style=US_splitlevel_2000)

and obtain a model with the following structure and appear-
ance:

• Three stories:

– Basement level: large family room, utility rooms,
garage.

– Main level: family room, living room, dining room, and
kitchen.

– Top level: bedrooms, bathroom.

• Minimal decoration

• Pitched gable roof

• Large windows.

In the following, we will say more about customizing de-
fault designs. For example, the following minimal EDE-
LANG program

house

will generate a house model with default style, default inner
structure and default appearance. However, the user of EDE-
LANG will frequently want to customize this design further.
For example, we could override the default number of stories
(which is set to 1 when we use the default us ranch 2000
style) by writing

house(nr_stories=2)

Therefore, in this case EDELANG will try to respect all the
characteristics of the current style, all the while configuring
all the spaces into two stories, not just one story as dictated
by the current style us ranch 2000.

Also, if an EDELANG user wants to have a different set
of rooms/spaces in the design, he could begin by writing:

house
{}

As we can see, the program above opened a scope using
a pair of parentheses {}, and this produces the effect of re-
moving all the default spaces/rooms from the final generated
model, while still retaining the outward appearance and total
available area of the house. If we now write

house
{

kitchen
}

the generated house model will still retain the outward ap-
pearance and total available area of the house, but with the
addition of one kitchen. This kitchen will have the default
area as defined by the style, and the rest of the story will
be empty. Since the keyword kitchen carries rich semantics,
EDELANG will also automatically create all the content rel-
evant to a kitchen (like plumbing, etc.) in the final house

model. If the user wants to create a simple space, however,
the keyword space should be used.

Furthermore, subparts of the house design can have their
own styles. For example, in the last EDELANG program
above, the component kitchen assumed the style inherited
from its parent component house, and this style was equal
to us ranch 2000. However if we specify

house
{

kitchen(style=farmkitchen)
}

the kitchen will assume its own style, that is of “farm
kitchen”, while the rest of the house model retains the
ranch style. All the sub-components within kitchen (like
stoves, sinks, cabinets, etc.) will then also inherit this
“farm kitchen” style and will be chosen accordingly so that
their appearance and function is compatible with the farm
style. Again, the rest of the house model will retain the
us ranch 2000 style.

Prior Work
Configuration Design
Configuration design is a kind of design where a fixed set of
predefined components that can be interfaced (connected) in
predefined ways is given, and an assembly (i.e. designed ar-
tifact) of components selected from this fixed set is sought
that satisfies a set of requirements and obeys a set of con-
straints (Mittal and Frayman 1989).

The design configuration problem consists of the follow-
ing three constituent tasks (Levin 2009):

1. Selection of components,
2. Allocation of components, and
3. Interfacing of components: design of ways the compo-

nents interface (connect) with each other.
Various techniques to solving the design configuration prob-
lem exist, and include (Levin 2009): the shortest path
problem; versions of basic multiple choice problem and
multicriteria multiple choice problem; multicriteria deci-
sion making approaches; traditional morphological analysis
methodology and its modifications; multipartite graph clus-
tering; hierarchical morphological design approach based on
morphological clique problem; parametric design; heuris-
tics for component set identification problem; evolution-
ary approaches (genetic algorithms, etc.); multiagent ap-
proaches; approaches based on fuzzy sets; constraint-based
methods including composite constraint satisfaction prob-
lems; ontology-based approaches; AI techniques; and de-
sign grammars approaches (e.g., multidisciplinary grammar
approach that includes production rules and optimization,
graph grammar approach).

Types of knowledge involved in configuration design in-
clude (Wielinga and Schreiber 1997):
• Problem-specific knowledge:

– Input knowledge:
∗ Requirements

∗ Constraints
∗ Technology

– Case knowledge

• Persistent knowledge (knowledge that remains valid over
multiple problem solving sessions):

– Case knowledge
– Domain-specific, method-independent

knowledge
– Method-specific domain knowledge
– Search-control knowledge

Semantic Web
Traditional HTML pages are designed to be read by peo-
ple, not parsed by machines. Based on the existing XML
standards, the W3C consortium has created several specifi-
cations geared towards allowing computers to “understand”
the content accessible over the Web. Of these, the most
important ones are the Resource Description Framework
(RDF), and the Web Ontology Language (OWL).

RDF is a general-purpose language for representing in-
formation in the Web. It describes resources (these include
any imaginable entity – resources accessible on the Web,
tangible objects, abstract entities, . . .) in terms of named
properties and values. The RDF vocabulary description lan-
guage, RDF Schema (RDFS), describes vocabularies used in
RDF descriptions; vocabularies define classes of resources,
properties, and relationships between classes. For example,
to compare RDF and RDFS with traditional object-oriented
(OO) systems, in OO systems the developer of a class con-
trols what properties a class will have; in RDF and RDFS,
anyone is able to define a new property of a class. There-
fore, one could say that OO systems are resource-centric and
centralized, while RDF and RDFS are property-centric and
decentralized.

OWL was designed in order to overcome the limited ex-
pressiveness of RDFS. The purpose of OWL is to provide a
family of languages that can be used to describe ontologies
(that is, classes, and relations between them). OWL is more
powerful than file structuring capabilities such as DTDs and
XSD. There are three versions of OWL that contain con-
strained subsets of the language and that may be used for
various purposes:

• OWL Lite is a simple language intended to satisfy users
needing a classification hierarchy and simple constraint
features.

• OWL DL uses concepts from formal Description Logic
(hence the DL designation). It includes the complete
OWL vocabulary, but some constraints are placed on us-
age.

• OWL Full contains all the OWL language constructs and
provides free, unconstrained use of RDF constructs.

OWL has a well-defined syntax and semantics, and support
for automated reasoning, through the use of so-called rea-
soners. For example, in OWL one can conduct automated
tests for class membership of an instance, test equivalence

of classes, check for errors both in the ontology and associ-
ated knowledge bases, or check for unintended relationships
between classes. These functionalities are crucial when inte-
grating ontologies from different domains, or when dealing
with very large OWL code bases.

Domain-Specific Languages
Domain-specific languages (DSLs), also called little lan-
guages (Bentley 1986), serve to develop solutions by using
concepts characteristic to a specific domain. In their respec-
tive domains of application, DSLs offer significant gains in
expressiveness and ease of use, compared with general pur-
pose programming languages such as C, C++, Java, Ruby
and Python. Examples of well-known and successful DSLs
include SQL, Matlab, HTML, TeX/LATEX and VHSIC Hard-
ware Description Language (VHDL).

DSLs that are successful in their respective niches are
characterized by the following principal factors (Sprinkle et
al. 2009):

• They satisfy the domain requirements,

• Restrict the user to input only the parameters characteris-
tic of the domain, and

• Give the users easy access to constructs used in the do-
main.

In the ideal case, a DSL utilizes domain constructs with se-
mantics that are as close to the original semantics as is pos-
sible, thus allowing the user to work directly with the con-
cepts from the domain. The resulting DSL source code is
thus on a higher level as compared to source codes written
general-purpose programming languages, and represent si-
multaneously (Sprinkle et al. 2009) the:

1. Design,

2. Implementation, and

3. Documentation

of the artefact being modelled or programmed. EDELANG
can thus be viewed as a family of DSLs for developing de-
signs in a particular sub-domain of environmental design.

Conclusion and Future Work
We presented EDELANG, a very high-level modeling and
programming language for environmental design. As distin-
guished from current CAD tools and packages, EDELANG
puts much more emphasis on allowing the user to specify
what to include in the final building design, instead of how
to create the design.

The guiding design principles for EDELANG are:

• Formal specification.

• Greatest possible effect (i.e. a complete building design)
for as little source code as possible. What isn’t specified
in the source code, is decided upon by EDELANG.

• Human-readable and user-friendly language, thus usable
even by non-programmers.

• Declarative, goal-oriented and constraint-based program-
ming language.

• Support for rapid prototyping of environmental designs.
• Separation of content, topology, design and constraints.

Within the classic “design problem space” vs. “design
solution space” dichotomy, the version of EDELANG pro-
posed in this work represents a point in the solution space.
Future work includes extending EDELANG to cover the de-
sign problem space as well, by including entities character-
istic of this space such as 1) mission statements, 2) design
goals, 3) early-phase design constraints and 4) functional
and non-functional design requirements.

References
Alexander, C. 1979. The Timeless Way of Building. New
York, USA: Oxford University Press.
Bentley, J. 1986. Programming pearls: little languages.
Commun. ACM 29(8):711–721.
Brooks, Jr., F. P. 1978. The Mythical Man-Month: Essays
on Software Engineering. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Levin, M. S. 2009. Combinatorial optimization in system
configuration design. Autom. Remote Control 70(3):519–
561.
Mittal, S., and Frayman, F. 1989. Towards a generic model
of configuration tasks. In Proceedings of the 11th IJCAI,
1395–1401. San Mateo, CA, USA: Morgan Kaufman.
Sprinkle, J.; Mernik, M.; Tolvanen, J.-P.; and Spinellis, D.
2009. What kinds of nails need a domain-specific hammer?
IEEE Software 26(4):15–18. Guest Editors’ Introduction:
Domain Specific Modelling.
Wielinga, B., and Schreiber, G. 1997. Configuration-
design problem solving. IEEE Intelligent Systems 12:49–
56.

Appendix: EDELANG specification
EDELANG is case insensitive.

EDELANG Grammar Rules (Extended
Backus-Naur Form)
program −→ declaration-list
declaration-list −→ declaration-list | declaration
declaration −→ fun-declaration
fun-declaration −→ ID (params) compound-stmt
params −→ param-list | empty
param-list −→ param-list, param | param
param −→ parameter = expression
parameter −→ ID
expression −→
compound-stmt −→ { statement-list }

